Forecasting the Prospect of the Future Business Growth and Detecting Distorted Earnings in Public Insurance Industry: The Voice from Indonesia

Authors

  • Ahmad Abbas Department of Sharia and Islamic Business Economics, Sekolah Tinggi Agama Islam Negeri Majene http://orcid.org/0000-0002-6492-8145
  • Neks Triani Department of Accounting, Universitas Sembilanbelas November Kolaka
  • Sasmita Nabila Syahrir Department of Accounting, Universitas Sembilanbelas November Kolaka

DOI:

https://doi.org/10.21532/apfjournal.v8i1.289

Keywords:

ARIMA, Earnings, Growth, Insurance

Abstract

Insurance firms nowadays become a highlight for society after some cases of payment failure in Indonesia occur such as Jiwasraya, and Bumi Putera. It may decrease public trust in the prospect of the insurance business in the future. This research aims to demonstrate the future growth of the insurance business performances in Indonesia and detect distorted earnings. Afterward, the future growth yielded by firms between distorted and non-distorted earnings is tested in this research. The sample was public insurance firms in Indonesia. Financial data were analyzed using Autoregressive Integrated Moving Average (ARIMA) for forecasting future growth, meanwhile, the nexus between variables was tested using a logistic regression model of panel data. The result found that the prospect of insurance firms will be growing with positive and negative values. They will pull through the ups and downs of business over the period of 2021 to 2027. This research further detected the distorted earnings in the insurance business performances and found that the future growth yielded by firms with distorted earnings has no difference from non-distorted earnings. The finding is addressed to the insurance companies as input. They need to prepare their business from now by increasing their performance. This finding is considered as the means of rebuilding their trust in the growth of the insurance business and providing the answer to society regarding the insurance business prospect in the future.

References

Abbas, A. (2017). Earnings Fraud and Financial Stability. Asia Pacific Fraud Journal, 2(1), 117–134. https://doi.org/10.21532/apfj.001.17.02.01.010

Adnyana, I. M., & Firdaus, S. (2020). Prediksi Financial Distress dengan Model Altman Z-Score Modifikasi pada Perusahaan Asuransi yang Terdaftar di Bursa Efek Indonesia. Oikonomia: Jurnal Manajemen, 16(1), 54–67. https://doi.org/10.47313/oikonomia.v16i1.1002

Almasarweh, M., & Wadi, S. AL. (2018). ARIMA Model in Predicting Banking Stock Market Data. Modern Applied Science, 12(11), 309–312. https://doi.org/10.5539/mas.v12n11p309

Ari, I. A. G. R. P., & Astiti, D. P. (2014). Peran Persepsi Individu Terhadap Asuransi dan Model Kepercayaan Kesehatan dalam Pengambilan Keputusan Menggunakan Asuransi Jiwa. Jurnal Psikologi Udayana, 1(2), 381–388. https://doi.org/10.24843/jpu.2014.v01.i02.p17

Ariadi, B. Y. (2013). Sejarah Asuransi Di Indonesia. Disertasi.

Beneish, M.D. (1999). The Detection of Earnings Manipulation. Financial Analyst Journal, 1, 24-26.

Cressey, D.R. (1953). Other People’s Money: A Study in the Social Pscychology of Embezzlement. Glencoe, Illinois: the Free Press.

Detikfinance. (2020). Aduan Masyarakat Terbanyak di 2019 Soal Pinjol Hingga Asuransi. https://m.detik.com/finance/berita-ekonomi-bisnis/d-48581/aduan-masyaraka-terbanyak-di-2019-soal-pinjol-hingga-asuransi.

Donatelli, R. E., Park, J. A., Mathews, S. M., & Lee, S. J. (2022). Time series analysis. In American Journal of Orthodontics and Dentofacial Orthopedics, 161(4). https://doi.org/10.1016/j.ajodo.2021.07.013

Gujarati, D. N. (2015). Panel Data Regression Models. Econometrics. https://doi.org/10.1007/978-1-137-37502-5_17

Hibbeln, M., Jenkins, J. L., Schneider, C., Valacich, J. S., & Weinmann, M. (2014). Investigating the effect of insurance fraud on mouse usage in human-computer interactions. 35th International Conference on Information Systems “Building a Better World Through Information Systems”, ICIS 2014.

Ibnu, R., & Soenhadji, I. M. (2005). Pola dan Pertumbuhan Perusahaan Asuransi di Indonesia. Majalah Ekonomi Dan Komputer, XIII(2), 94–106.

Kaur, R., Sharma, K., & Khanna, A. (2014). Detecting Earnings Management in India: A sector-wise study. European Journal of Business and ManagementOnline), 6(11), 11–18.

Kirlidog, M., & Asuk, C. (2012). A Fraud Detection Approach with Data Mining in Health Insurance. Procedia-Social and Behavioral Sciences, 62. 10.1016/j.sbspro.2012.09.168.

Kompas. (2020). Lima Tahun Terakhir, Kinerja Industri Asuransi Positif. https://amp.kompas.com/money/read/2020/01/21/172614726/lima-tahun-terakhir-kinerja-industri-asuransi-positif.

Kontan.co.id. (2021). Saham-saham Emiten Asuransi Kurang Likuid, Ini Rekomendasinya. https://keuangan.kontan.co.id/news/saham-saham-emiten-asuransi-kurang-likuid-ini-rekomendasinya.

Mavengere, K. (2015). Predicting corporate bankruptcy and earnings manipulation using the Altman Z-score and Beneish M score. The case of manufacturing firm in Zimbabwe. International Journal of Management Sciences and Business Research, 4(10), 8–14.

Mehta, A., & Bhavani, G. (2017). Application of Forensic Tools to Detect Fraud: The Case of Toshiba. Journal of Forensic and Investigative Accounting, 9(1).

Nanlohy, Y. W., & Haumahu, G. (2021). Autoregressive Integrated Moving Average (ARIMA). Tensor, 2(1), 25–32.

Nielsen, H. B. (2004). Non-Stationary Time Series and Unit Root Tests. Spring.

OJK. (2020a). Statistik Asuransi Indonesia Desember 2020. www.ojk.go.id

OJK. (2020b). Statistik Perasuransian 2020. Laporan Otoritas Jasa Keuangan. www.ojk.go.id

Puspitasari, N. (2011). Sejarah Per-kembangan Asuransi Islam serta Perbedaanya dengan Asuransi Konvensional. Jurnal Ekonomi Akuntansi Dan Manajemen, 10(1).

Rahim, H. (2013). Optimisme Pertumbuhan Asuransi Indonesia; Proyeksi Per-kembangan Lima Tahun (2014-2018). Jurnal Asuransi Dan Manajemen Resiko, 1(2), 1–21.

Roxas, M. L. (2011). Financial Statement Fraud Detection Using Ratio and Digital Analysis. Journal of Leadership, Accountability, and Ethics, 8, 56–66.

Salman, A. G., & Kanigoro, B. (2021). Visibility Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Models. Procedia Computer Science, 179. https://doi.org/10.1016/j.procs.2021.01.004

Santosa, S., & Ginting, J. (2019). Evaluasi Keakuratan Model Beneish M-Score Sebagai Alat Deteksi Kecurangan Laporan Keuangan (Kasus Perusahaan Pada Otoritas Jasa Keuangan di Indonesia). Majalah Ilmiah Bijak, 16(2), 75–84. https://doi.org/10.31334/bijak.v16i2.508

Setiadie, H. (2019). Analisis Kompetisi dan Prospek Industri Asuransi di Indonesia: Studi pada Industri Asuransi Jiwa dan Asuransi Umum di Indonesia. Universitas Gadjah Mada.

Setiawan, S. (2013). Prospek dan Daya Saing Sektor Perasuransian Indonesia Di Tengah Tantangan Integrasi Jasa. Naga Media.

Sula, M. S. (2004). Asuransi Syariah (Life and General: Konsep dan Sistem Operasional. Gema Insani Press.

Tarjo, & Herawati, N. (2015). Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud. Procedia - Social and Behavioral Sciences, 211. 10.1016/j.sbspro.2015.11.122

Viaene, S., & Dedene, G. (2004). Insurance Fraud: Issues and Challenges. Geneva Papers on Risk and Insurance: Issues and Practice, 29(2). 10.1111/j.1468-0440.2004.00290.x

Warshavsky, M. S. (2015). Forensic Tools & Techniques. Marryland Association of CPS’s. http://macpamedia.org/media/downloads/2015FVS/Warshavsky_PPT1pp.pdf.

Wartaekonomi. (2018). Menilik Pertumbuhan Industri Asuransi di Indonesia. https://www.wartaekonomi.co.id/read207639/menilik-pertumbuhan-industri-asuransi-di-indonesia.

Wheelwright, S., Makridakis, S., Makridakis, S., Wheelwright, S., Gross, C. W., Peterson, R. T., Eby, F. H., & O’Neill, W. J. (1978). Forecasting Methods for Management. Journal of Marketing Research, 15(4). https://doi.org/10.2307/3150640

William W. S., W., & Lütkepohl, H. (2005). Time Series Analysis : Univariate and Multivariate Methods (2nd Edition). In New introduction to Multiple Time Series Analysis. Addison Wesley.

Wulff, S. S. (2017). Time Series Analysis: Forecasting and Control, 5th edition. Journal of Quality Technology, 49(4). https://doi.org/10.1080/00224065.2017.11918006

Ziegel, E. R., Box, G., Jenkins, G., & Reinsel, G. (1995). Time Series Analysis, Forecasting, and Control. Technometrics, 37(2). https://doi.org/10.2307/1269640.

Downloads

Published

2023-06-30

How to Cite

Abbas, A., Triani, N., & Syahrir, S. N. (2023). Forecasting the Prospect of the Future Business Growth and Detecting Distorted Earnings in Public Insurance Industry: The Voice from Indonesia. Asia Pacific Fraud Journal, 8(1), 123–136. https://doi.org/10.21532/apfjournal.v8i1.289