Data Analytics in Fraud Prevention and Detection by Government Internal Supervisory Apparatuses at Ministries/Institutions/Local Governments: A Mixed-Method Study

Authors

  • Diana Laurencia Sidauruk Inspectorate General of the Ministry of Finance of the Republic of Indonesia

DOI:

https://doi.org/10.21532/apfjournal.v9i2.340

Keywords:

Data Analytics, Fraud Detection, Fraud Prevention, Government Internal Supervisory Apparatuses, Internal Audit Effectiveness, Audit Independence

Abstract

This study investigates differences in internal audit effectiveness and data analytics (DA) usage by the Government’s Internal Supervisory Apparatus (GISA) in fraud prevention and detection (FPD). It examines variations in DA usage based on GISA effectiveness and independence, motivations for DA use, application methods, and the effectiveness of DA tools. Using a mixed-method approach, data was collected via questionnaires and interviews. Independent Samples T-Test results indicate significant differences in internal audit effectiveness and DA usage between high and low DA usage groups across the full sample and within ministries/institutions. Significant differences in DA usage are also found based on GISA effectiveness and independence across the full sample and within ministries/institutions, but not within local governments. Key motivations for DA use include improving FPD efficiency, and DA has shown to enhance anomaly detection and audit scope, with Microsoft Excel and Audit Command Language (ACL) as the most used tools. Findings suggest optimized DA use through expanded access, training, and tailored resource.

References

Aboud, A. and Robinson, B. (2020). Fraudulent financial reporting and data analytics: an explanatory study from ireland. Accounting Research Journal, 35(1), 21-36. https://doi.org/10.1108/arj-04-2020-0079

Abdullah, R. B. (2014). Redefining internal audit performance: Impact on corporate governance. Disertation. Edith Cowan University.

Abiola, I & Oyewole, A. (2013). Internal control system on fraud detection: Nigerian experience. Journal of Accounting and Finance, 13 (5), 141-152.

Adekoya, A. A., Olaoye, S. A., & Lawal, B. A. (2023). Internal Audit Values and Fraud Detection: An Empirical Analysis. Asian Journal of Economics, Business and Accounting, 23(17), 162-172.

Alfian, A. (2023). Fraud analytics practices in public-sector transactions: a systematic review. Journal of Public Budgeting Accounting & Financial Management, 35(5), 685-710. https://doi.org/10.1108/jpbafm-11-2022-0175.

Al-Abedi, T. (2023). Empirical study for the strategic role of internal audit in dedicating fraud risk in the financial statement: evidence from iraq. Journal of Economics & Administration, 133, 308-322. https://doi.org/10.31272/jae.i133.947

ACFE. (2020). ACFE Report to the Nations. Association of Certified Fraud Examiners

ACFE. (2022). ACFE Report to the Nations. Association of Certified Fraud Examiners

Awuah, B., Onumah, J., & Duho, K. (2021). Determinants of adoption of computer-assisted audit tools and techniques among internal audit units in ghana. The Electronic Journal of Information Systems in Developing Countries, 88(2). https://doi.org/10.1002/isd2.12203

B?n?rescu, A. (2015). Detecting and preventing fraud with data analytics. Procedia economics and finance, 32, 1827-1836.

Betti, N. and Sarens, G. (2020). Understanding the internal audit function in a digitalised business environment. Journal of Accounting & Organizational Change, 17(2), 197-216. https://doi.org/10.1108/jaoc-11-2019-0114

Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical science, 17(3), 235-255.

Coram, P., Ferguson, C., & Moroney, R. (2008). Internal audit, alternative internal audit structures and the level of misappropriation of assets fraud. Accounting & Finance, 48(4), 543-559.

Crain, M. A., Hopwood, W. S., Gendler, R. S., Young, G. R., & Pacini, C. (2019). Essentials of forensic accounting. John Wiley & Sons.

Deloitte. (2022). The Future of Internal Audit: A Global Perspective. deloitte.

Devi, N. P. H. C., & Pande Dwiana Putra, I. M. (2019). Pengaruh Profesionalisme, Independensi dan Pelatihan Auditor Terhadap Kinerja Auditor Pada Kantor Akuntan Publik Provinsi Bali. E-jurnal Akuntansi, 27(2), 1472-1497. https://doi.org/10.24843/eja.2019.v27.i02.p24.

Dewan Pengurus Nasional Asosiasi Auditor Intern Pemerintah Indonesia. Peraturan DPN AAIPI Nomor PER-01/AAIPI/DPN/2021 tentang Standar Audit Intern Pemerintah Indonesia. 2021. Jakarta.

Goodwin-Stewart, J., & Kent, P. (2006). The use of internal audit by Australian companies. Managerial Auditing Journal, 21(1), 81-101.

Gupta, R. (2019). Data mining for fraud detection: an overview of techniques and applications. Turkish Journal of Computer and Mathematics Education (Turcomat), 10(1), 561-567. https://doi.org/10.17762/turcomat.v10i1.13549.

Ibrahim, M. A., & Al-Haidari, W. H. S. (2022). The Effectiveness of Internal Audit Process And Team in Detecting The Financial and Administrative Corruption In The Iraqi Public Sector. International Journal of Economics and Finance Studies, 14(3), 211-226.

Indrawati, L., Cahyono, D., & Maharani, A. (2019). Pengaruh skeptisisme profesional, independensi auditor dan pelatihan audit kecurangan terhadap kemampuan auditor dalam mendeteksi kecurangan. International Journal of Social Science and Business, 3(4), 393. https://doi.org/10.23887/ijssb.v3i4.21496.

Institute of Internal Auditors. (2019). IIA position paper: Fraud and internal audit – Assurance over fraud controls fundamental to success. The Institute of Internal Auditors. https://www.theiia.org/globalassets/documents/resources/fraud-and-internal-audit-assurance-over-fraud-controls-fundamental-to-success-april-2019/fraud-and-internal-audit.pdf.

Institute of Internal Auditors (IIA). (2021). International Standards for the Professional Practice of Internal Auditing.

Islam, S. and Stafford, T. (2021). Factors associated with the adoption of data analytics by internal audit function. Managerial Auditing Journal, 37(2), 193-223. https://doi.org/10.1108/maj-04-2021-3090.

Jans, M., Alles, M., & Vasarhelyi, M. (2014). A field study on the use of process mining of event logs as an analytical procedure in auditing. The Accounting Review, 89(5), 1751-1773. https://doi.org/10.2308/accr-50807.

Kamal, M. and Elim, J. (2021). The strategy to optimize the role of government internal supervisory apparatus (apip) in procurement fraud risk management in industry 4.0. Jurnal Tata Kelola dan Akuntabilitas Keuangan Negara, 7(2), 151-168. https://doi.org/10.28986/jtaken.v7i2.588.

Kaya, ?., Akbulut, D., & Ozoner, K. (2018). Big data analytics in internal audit. Pressacademia, 7(1), 260-262. https://doi.org/10.17261/pressacademia.2018.893.

KPK. (2023). Masih Rentan Korupsi, KPK Dorong Integritas Pelayanan Publik Pemprov Jawa Barat. Komisi Pemberantasan Korupsi

KPK. (2017). Kajian Penguatan APIP. Komisi Pemberantasan Korupsi

KPMG. (2020). Fraud Risk Management: A Practical Guide. KPMG

Kukreja, G., Gupta, S., Sarea, A., & Kumaraswamy, S. (2020). Beneish m-score and altman z-score as a catalyst for corporate fraud detection. Journal of Investment Compliance, 21(4), 231-241. https://doi.org/10.1108/joic-09-2020-0022.

Laming, R., Setiawan, A., & Saleh, H. (2019). The effect of whistleblowing hotline, surprise audit, and the independence of audit committee on internal fraud: facts of banking companies in indonesia. International Journal of Advanced Engineering Research and Science, 6(12), 401-406. https://doi.org/10.22161/ijaers.612.44.

Lazarevska, Z. B., Tocev, T., & Dionisijev, I. (2022). How to Improve Performance in Public Sector Auditing Through the Power of Big Data and Data Analytics?–The Case of The Republic Of North Macedonia. Journal of Accounting, Finance and Auditing Studies, 8(3), 187-209.

Li, H., Dai, J., Gershberg, T., & Vasarhelyi, M. A. (2018). Understanding usage and value of audit analytics for internal auditors: An organizational approach. International Journal of Accounting Information Systems, 28, 59-76.

Moradi, M. and Nia, E. (2020). The impact of organizational factors based on technology-organization-environment (toe) framework on practical levels and characteristics of audit analysis and internal audit performance. European Journal of Business Management and Research, 5(4), 1-8. https://doi.org/10.24018/ejbmr.2020.5.4.261.

Wadesango, N., Mutambirwa, P. R., Newman, W., Sitsha, L., & Ongayi, W. (2022). A Critical Analysis of the Impact of Internal Auditing on Fraud Detection in the Cement Manufacturing Industry of Zimbabwe. Impact of Internal Auditing on Fraud Detection. Journal of Accounting & Management, 12(3), 57-67.

Nisak, I. A., & Rochayatun, S. (2023). The Role of Internal Audit, Fraud Detection, and Prevention in Universities: A Literature Review. Dialektika: Jurnal Ekonomi dan Ilmu Sosial, 8(1), 63-71.

Novita, N. and Anissa, A. (2022). The role of data analytics for detecting indications of fraud in the public sector. International Journal of Research in Business and Social Science, 11(7), 218-225. https://doi.org/10.20525/ijrbs.v11i7.2113

Nugraha, S., & Susanto, E. (2017, November). The Role of the Government Internal Auditor in Fraud Risk Management: A Case Study in Local Government of Gunung Kidul and Sleman Yogyakarta Province. International Conference on Administrative Science (ICAS 2017). Atlantis Press. https://doi.org/10.2991/icas-17.2017.47.

Nwaobia, A. N., Omotayo, I. I., & Ajibade, A. (2021). Internal audit and fraud detection in selected banks listed in Nigeria. IOSR Journal of economics and Finance, 12(4), 51-65.

Onoja, E., & Usman, H. (2015). Internal Audit Techniques and Fraud Prevention: A Case Study of Selected Local Government Councils in Bauch State. Mediterranean Journal of Social Sciences, 6(4), 232-244.

Ovami, D. C., & Muda, I. (2023, May). Data Analytics and Its Implication on Auditing. 12th International Conference on Green Technology (ICGT 2022), Atlantis Press. https://doi.org/10.2991/978-94-6463-148-7_10.

Perols, J., Bowen, R., Zimmermann, C., & Samba, B. (2016). Finding needles in a haystack: using data analytics to improve fraud prediction. The Accounting Review, 92(2), 221-245. https://doi.org/10.2308/accr-51562.

PwC. (2021). Global Economic Crime and Fraud Survey. PwC.

Rahayu, S., Herawaty, N., & Rahayu, R. (2022). Organizational commitment and the role of internal auditors as consultants and catalysts in fraud prevention efforts. Proceeding of International Conference on Economics Business Management Accounting and Sustainability, 1, 46-58. https://doi.org/10.55980/icebas.v1i.92.

Rakipi, R., De Santis, F., & D’Onza, G. (2021). Correlates of the internal audit function’s use of data analytics in the big data era: Global evidence. Journal of International Accounting, Auditing and Taxation, 42, 100357.

Ridwan, M., Suraida, & Dewi, E. (2021). Skeptisisme auditor dan dimensi fraud triangle dalam mendeteksi kecurangan. Akurasi Jurnal Studi Akuntansi dan Keuangan, 4(1), 61-72. https://doi.org/10.29303/akurasi.v4i1.78.

Rosnidah, I., Johari, R., Hairudin, N., Hussin, S., & Musyaffi, A. (2022). Detecting and preventing fraud with big data analytics: auditing perspective. Journal of Governance and Regulation, 11(4), 8-15. https://doi.org/10.22495/jgrv11i4art1.

Salijeni, G., Samsonova-Taddei, A., & Turley, W. (2021). Understanding how big data technologies reconfigure the nature and organization of financial statement audits: a sociomaterial analysis. European Accounting Review, 30(3), 531-555. https://doi.org/10.1080/09638180.2021.1882320.

Schneider, G., Dai, J., Janvrin, D., Ajayi, K., & Raschke, R. (2015). Infer, predict, and assure: accounting opportunities in data analytics. Accounting Horizons, 29(3), 719-742. https://doi.org/10.2308/acch-51140.

Shabani, N., Munir, A., & Mohanty, S. P. (2022). A Study of Big Data Analytics in Internal Auditing. In Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys). Springer International Publishing.

Sipayung, E. S. N., Yanti, H. B., & Setya, A. B. (2022, December). Impact of Anti-Fraud Awareness, Fraud Detection Procedures, and Technology to Fraud Detection Skill. In 3rd Borobudur International Symposium on Humanities and Social Science 2021 (BIS-HSS 2021). Atlantis Press. https://doi.org/10.2991/978-2-494069-49-7_132.

Suci, B., Kuntadi, C., & Pramukty, R. (2023). Pengaruh integritas, kompetensi dan pengalaman auditor terhadap efektivitas audit internal. Jurnal Economina, 2(7), 1767-1776. https://doi.org/10.55681/economina.v2i7.672.

Thiprungsri, S. and Vasarhelyi, M. (2011). Cluster analysis for anomaly detection in accounting data: an audit approach. The International Journal of Digital Accounting Research, 11(4), 69-84. https://doi.org/10.4192/1577-8517-v11_4.

TI. (2023). Corruption Perceptions Index 2022. Transparency International.

Widiyanti, A. (2024). Faktor-faktor yang mempengaruhi kualitas audit dalam mendeteksi bukti-bukti kecurangan di lampung indonesia. Jurnal Akuntansi Dan Keuangan, 29(1), 60-68. https://doi.org/10.23960/jak.v29i1.2509.

Wilopo, R., Dewi, N., & Djuwito, D. (2018). Faktor internal dan eksternal dalam whistle blower system. Ekuitas (Jurnal Ekonomi Dan Keuangan), 18(2), 242-258. https://doi.org/10.24034/j25485024.y2014.v18.i2.151

Downloads

Published

2024-12-13

How to Cite

Sidauruk, D. L. (2024). Data Analytics in Fraud Prevention and Detection by Government Internal Supervisory Apparatuses at Ministries/Institutions/Local Governments: A Mixed-Method Study. Asia Pacific Fraud Journal, 9(2), 241–260. https://doi.org/10.21532/apfjournal.v9i2.340