Fraud Syndicates Within Digital Ecosystem: Graph Network and Transaction Analysis Approach

Authors

  • Ferdi Hidayat Irawandi Digital Cybersecurity and Fraud Management - PT Bank Multiarta Sentosa Tbk
  • Kristy Natasha Yohanes Data & AI - PT Dans Multi Pro
  • Lalu Alham Fraud Management & Authorization - PT Espay Debit Indonesia Koe (DANA)

DOI:

https://doi.org/10.21532/apfjournal.v10i1.381

Keywords:

Financial Crime, Fraud, Syndicate, Graph, Neural Network, Machine Learning

Abstract

This paper aims to develop and test methods to detect organized crime, fraud syndicates, and Money Laundering schemes within an e-wallet ecosystem. Analytical An analyticalprocess framework combining Graph Analytics and Supervised Learning is developed and trained with sample spaces of fraud and non-fraud. The pipeline utilized Heterogeneous Graph Transformation (HGT), Graph Statistics (Centrality Measures and Community Detection), and a Gradient Boosting Model to produce models for the detection of fraud syndicate syndicatesand organized crime. Welch’s t-test is employed to infer variance differences between samples. Findings confirm the hypothesis that fraud networks are markedly different, exhibiting a more centralized and isolated network compared to the organic, interconnected behaviors of non-fraudulent users. Fraud networks are further characterized by multiple isolated clusters, indicating distinctive groups or behaviors. The proposed method can provide validated methods of fraud and money laundering detection, especially for financial decision-makers and policymakers, to enhance fraud detection systems by improving the protection, integrity, and security of customers and digital transactions.

References

ACFE. (2024). Fraud 101: What is Fraud?. ACFE. https://www.acfe.com/fraud-resources/fraud-101-what-is-fraud.

Alekhin, S., Shmatenko, L. (2018). Corruption in Investment Arbitration - It Takes Two to Tango. New Horizons of International Arbitration. Association of Private International and Comparative Law Studies.

Alothman, R., Talib, H. A., & Mohammed, M. S. (2022). Fraud detection under the unbalanced class based on gradient boosting. Eastern-European Journal of Enterprise Technologies, 2(2), 6–12. https://doi.org/10.15587/1729-4061.2022.254922.

Bank Indonesia. (2019). Blueprint Sistem Pembayaran Indonesia 2025 Bank Indonesia: Menavigasi Sistem Pembayaran Nasional di Era Digital. Bank Indonesia. https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/blueprint-2025/default.aspx#:~:text=BSPI%202025%20adalah%20arah%20kebijakan,era%20ekonomi%20dan%20keuangan%20digital.

Berge, C. (1958). Théorie des graphes et ses applications [English: The theory of graphs and its applications]. Wiley.

Black, H. C. (2018). Legal Dictionary: Fraud. Black’s Law Dictionary, 8th Edition. Law.com.

Borgatti, S. P., Everett, M. G., Johnson, J. C. (2013). Analyzing Social Networks. SAGE Publications Ltd.

C. Xu and J. Zhang. (2015). Towards Collusive Fraud Detection in Online Reviews. 2015 IEEE International Conference on Data Mining, Atlantic City, NJ, USA.

Campana, P., Antonopoulos, G. A. (2024). A Relational Approach to Organised Crime. Trends in Organized Crime, 27, 229–234. https://doi.org/10.1007/s12117-024-09534-4.

Chiesi, A. M. (2001). Network Analysis. International Encyclopedia of the Social & Behavioral Sciences. https://doi.org/10.1016/B0-08-043076-7/04211-X.

Cosmin, D., Polkowski, Z., & Gruber, Jacek. (2013). E-Fraud. DWSPiT Polkowice.

Dominik Olszewski. (2014). Fraud Detection Using A Self-Organizing Map to Visualize the User Profiles. Knowledge-Based Systems, 70, 324-334. https://doi.org/10.1016/j.knosys.2014.07.008.

Euler, L. (1736). Solutio Problematis Ad Geometriam Situs Pertinentis. Commentarii academiae scientiarum Petropolitanae, 7(1), 128-140.

Europol. (2023). Online Fraud Schemes: A Web of Deceit. Internet Organised Crime Threat Assessment (IOCTA).

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., & Monfardini, G. (2009). The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20, 61-80.

FATF – Interpol - Egmont Group. (2023). Illicit Financial Flows from Cyber-Enabled Fraud, FATF, Paris, France. Link: fatf-gafi.org/content/fatf-gafi/en/publications/Methodsandtrends/illicit-financial-flows-cyberenabled-fraud.html

Felson, M. (2003). The Process of Co-offending. Martha Smith and DerekCornish (eds). Criminal Justice Press.

Gartner. (2022). Market Guide for Graph Database Management Systems. Gartner Research. https://www.gartner.com/en/documents/4018220.

Ghosh, S., Anand, R., Bhowmik, T., & Chandrashekhar, S. (2023). GoSage: Heterogeneous Graph Neural Network Using Hierarchical Attention for Collusion Fraud Detection. ICAIF 23, Proceedings of the Fourth ACM International Conference on AI in Finance. https://doi.org/10.1145/3604237.3626856

Girvan M., Newman M. E. J. (2002). Community Structure in Social and Biological Networks. Proc. Natl. Acad. Sci. USA, 99(12), 7821–7826

Grandjean, M. (2016). Applications of Graph Theory. Proceedings of the IEEE, 106(5), 784 - 786.

He, E., Hao, Y., Zhang, Y., Yin, G., & Yao, L. (2024). SCALA: Sparsification-based Contrastive Learning for Anomaly Detection on Attributed Networks. Social and Information Networks.

Hu, Z., Dong, Y., Wang, K., & Sun, Y. (2020). Heterogeneous Graph Transformer. Proceedings of The Web Conference 2020. https://doi.org/10.1145/3366423.3380027.

Islam, A. et al. (2011). Detecting Collusive Fraud in Enterprise Resource Planning Systems. In: Peterson, G., Shenoi, S. (eds) Advances in Digital Forensics VII. Digital Forensics 2011. IFIP Advances in Information and Communication Technology, 361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24212-0_11.

J. J. Sylvester. (1878). On an Application of The New Atomic Theory to The Graphical Representation of The Invariants and Covariants of Binary Quantics, with Three Appendices. American Journal of Mathematics, 1(1), 64-90.

Jacomy, M., Venturini, T., Heymann, S., Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization, Designed for the Gephi Software. PLoS ONE, 9(6): 1-12. https://doi.org/10.1371/journal.pone.0098679

Levi, M. (2008). Organized Fraud and Organizing Frauds: Unpacking Research on Networks and Organization. Criminology and Criminal Justice, 8(4), 389-419. http://dx.doi.org/10.1177/1748895808096470.

Li, Z., Fang, X., Sheng, O. R. (2017). A Survey of Link Recommendation for Social Networks: Methods, Theoretical Foundations, and Future Research Directions. ACM Transactions on Management Information Systems, 9(1), 1–26. https://doi.org/10.1145/3131782.

Mastercard. (2024). E-commerce Fraud Trends and Statistics Merchants Need to Know in 2024. https://b2b.mastercard.com/news-and-insights/blog/ecommerce-fraud-trends-and-statistics-merchants-need-to-know-in-2024/.

Nasteski, V. (2017). An Overview of the Supervised Machine Learning Methods. HORIZONS. B. 4, 51-62. https://doi.org/10.20544/HORIZONS.B.04.1.17.P05.

Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press.

Rodrigues, C., Jain, M., R., Khanchandani, A. (2023). Performance Comparison of Graph Database and Relational Database. Technical Report, http://dx.doi.org/10.13140/RG.2.2.27380.32641.

S. Fortunato. (2010). Community Detection in Graphs. Physics Reports, 486, 1-103.

Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Appli-cations and Research Directions. SN COMPUT. SCI. 2, 160. https://doi.org/10.1007/s42979-021-00592-x

Shulzhenko, Nadiia. (2020). Internet Fraud and Transnational Organized Crime. Juridical Tribune - Review of Comparative and International Law, Bucharest Academy of Economic Studies, 10(1), 162-172.

Snedecor, W. & Cochran, W. (1989). Statistical Methods. 8th Edition, Iowa State University Press.

Sun, Y., Zhu, D., Wang, Y., & Tian, Z. (2024). GTC: GNN-Transformer Co-contrastive Learning for Self-supervised Heterogeneous Graph Representation. arXiv, 2403.15520. https://doi.org/10.48550/arXiv.2403.15520

Tremblay, P. (1993). Searching for Suitable Co-offenders. Routledge.

Utama, Paku. (2016). Gatekeepers’ Roles as a Fundamental Key in Money Laundering. Indonesia Law Review: 6(2), 180-206. https://doi.org/10.15742/ilrev.v6n2.215.

Welch, B. L. (1947). The Generalization of “Student’s” Problem when Several Different Population Variances Are Involved. Biometrika. 34 (1–2), 28–35. https://doi.org/10.1093/biomet/34.1-2.28.

World Bank. (2022). Press Release: “COVID-19 Drives Global Surge in Use of Digital Payments”. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. https://www.worldbank.org/en/news/press-release/2022/06/29/covid-19-drives-global-surge-in-use-of-digital-payments.

Zhu, X., Ao, X., Qin, Z., Chang, Y., Liu, Y., He, Q., Li, J. (2021). Intelligent Financial Fraud Detection Practices in The Post-Pandemic Era. The Innovation 2(4), 1-11 November 28, 2021. https://doi.org/10.1016/j.xinn.2021.100176.

Yun, S., Jeong, M., Kim, R., Kang, J., & Kim, H. J. (2019). Graph Transformer Networks. Cornell University, arXiv, 1911.06455. https://doi.org/10.48550/arXiv.1911.06455.

Downloads

Published

2025-07-28

How to Cite

Irawandi, F. H., Yohanes, K. N., & Alham, L. (2025). Fraud Syndicates Within Digital Ecosystem: Graph Network and Transaction Analysis Approach. Asia Pacific Fraud Journal, 10(1), 153–169. https://doi.org/10.21532/apfjournal.v10i1.381