Data Analytics of Procurement Fraud Risks in Indonesia

Mustofa Kamal(1*),

(1) Pusdiklatwas BPKP, Bogor
(*) Corresponding Author

Abstract


The era of digital transformation requires management and auditors to apply data analytics. This era also increases the risk of procurement fraud. This study aims to determine the application of data analytics in handling the risk of procurement fraud in the 4.0 era. Quantitative methods are applied with data analytics techniques to 2018 provincial tender data. The results show that descriptive statistical techniques can reveal the profile of collusion risk attributes. The average provincial construction tender in 2018 indicates a risk of collusion above 50% for the high price attribute. The visualization technique produces a tender collusion risk dashboard. There are 3 provincial LPSEs detected to meet the combined risk indications of collusion. The level of likelihood of collusion risk in the 3 provinces also shows “almost certain to occur” or with a value of 5. The results of this study have implications for data analytics which are very important to be immediately applied in government procurement to manage the risk of procurement fraud.


Keywords


Risk, Fraud, Data Analytics, Collusion, Procurement

Full Text:

PDF

References


Anderson, U. L., Head, M. J., Ramamoorti, S., Riddle, C., Salamasick, M., & Sobel, P. J. (2017). Internal Auditing: Assurance & Advisory Services (Fourth Edi). The Internal Audit Foundation, 1035 Greenwood Blvd., Suite 401.

Anysz, H., Foremny, A., & Kulejewski, J. (2019). Comparison of ANN Classifier to the Neuro-Fuzzy System for Collusion Detection in the Tender Procedures of Road Construction Sector. IOP Conference Series: Materials Science and Engineering, 471(11). https://doi.org/10.1088/1757-899X/471/11/112064

Appelbaum, D., Kogan, A., & Vasarhelyi, M. A. (2017). Big Data and Analytics in the Modern Audit Engagement: Research Needs. Auditing, 36(4), 1–27. https://doi.org/10.2308/ajpt-51684

Asad, A. F., Tarjo, & Musyarofah, S. (2019). Reorientasi Audit Internal Untuk Melawan Korupsi Pengadaan. Jurnal Akuntansi Multiparadigma, 10(3), 583–601.

Baesens, B., Vlasselaer, V. Van, & Verbeke, W. (2015). Fraud Analytics using descriptive, predictive, social network techniques; A Guide to Data Science for Fraud Detection. John Wiley & Sons, Inc.

Bagas, S. A. (2018). Implementasi Data Analytics Dalam Audit Laporan Keuangan sebagai Dampak dari Perkembangan Teknologi [Universitas Brawijaya]. repository.ub.ac.id

Banarescu, A. (2015). Detecting and Preventing Fraud with Data Analytics. Procedia Economics and Finance, 32, 1827 – 1836.

CAGI. (2017). Guidelines on Data Analytics (First Edit). Office of the Comptroller and Auditor General of India.

Capobianco, A., Gonzaga, P., & Nyeső, A. (2017). Algorithms and Collusion - Background Note by the Secretariat. the OECD Competition Division. http://www.oecd.org/daf/competition/algorithms-and-collusion.html.

Ferwerda, J., Deleanu, I., & Unger, B. (2017). Corruption in Public Procurement: Finding the Right Indicators. European Journal on Criminal Policy and Research, 23(2). https://doi.org/10.1007/s10610-016-9312-3

Gee, S. (2015). Fraud and Fraud Detection_A Data Analytics Approach. John Wiley & Sons, Inc.

Horsey, L. L. (2017). Data Analytics for Fraud Prevention and Detection in State Government. ProQuest.

IIA. (2017). Data Analytics; Is it time to take the first step?

Ismubandono, R. A. F., Putra, N. W. H., & Pramono, D. (2019). Analisis dan Perancangan Sistem Informasi Eksekutif Dashboard Data E-Government berbasis Service pada Pemerintah Kabupaten Sidoarjo. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(11), 10788–10796. http://j-ptiik.ub.ac.id

Kamal, M. (2020). Peran Aparat Pengawasan Intern Pemerintah (APIP) dalam Manajemen Risiko Fraud Pengadaan era 4.0 (Makalah Lomba Karya Tulis Ilmiah HUT BPKP 2020). Tidak Dipublikasikan

KPPU. (2018). P U T U S A N Perkara Nomor 21/KPPU-I/2018.

LKPP. (2019). Datathon LKPP (Kulik Data Tender). Tidak Dipublikasikan

Mirarab, A., Mirtaheri, S. L., & Asghari, S. A. (2019). Value Creation with Big Data Analytics for Enterprises: a survey. TELKOMNIKA, 17(6), 2790~2802.

Mohamed, I. S., Muhayyidin, N. H. M., & Rozzani, N. (2019). Auditing and Data Analytics Via Computer Assisted Audit Techniques (CAATS): Determinants of Adoption Intention Among Auditors in Malaysia. Proceedings of the 3rd International Conference on Big Data and Internet of Things (BDIOT 2019). Association for Computing Machinery, New York, NY, USA, 35–40. https://doi.org/10.1145/3361758.33617732019.

Oktorialdi. (2019). Arah Kebijakan Strategi National Transformasi Digital. Seminar Standarization in a Living Concept Society 5.0.

OLAF. (2017). Fraud in Public Procurement A collection of Red Flags and Best Practices.

Panuntun, D. J. S. (2020). Auditor Internal Pemerintah Di Era Digital. Jurnal Pengawasan, 2(1), 1-7.

principa.co. (2017). The 4 types of data analytics. www.Principa.Co.Za. https://insights.principa.co.za/4-types-of-data-analytics-descriptive-diagnostic-predictive-prescriptive

Rachmania, S. N. (2020). Kesalahan Penyusunan Harga Perkiraan Sendiri (HPS) dalam Pengadaan Barang/Jasa Pemerintah Yang Ber-implikasi Tindak Pidana. Jurist-Diction, 3(3), 1123–1152. https://doi.org/10.20473/jd.v3i3.18641.

Rajesh, J. (2016). Importance of Data Quality for Analytics. Springer International Publishing Switzerland. DOI 10.1007/978-3-319-21332-3_2

Telkom University. (2020). Bahan Ajar Sertifikasi Big Data Analitik.

Utomo, P., Setiawan, & Prayitno, W. F. (2015). Perancangan Dashboard Sistem Informasi Untuk Agile Manajemen Proyek d engan Menggunakan JIRA Studi Kasus d i P T . F LASH i Z Indonesia. JURNAL SISFOTEK GLOBAL, 5(2), 17-24.

Vadász, P., Benczúr, A., Füzesi, G., & Munk, S. (2016). Identifying Illegal Cartel Activities from Open Sources. In B. Akhgar, P. S. Bayerl, & F. Sampson (Eds.), Open Source Intelligence Investigation; From Strategy to Implementation (pp. 251–274). Springer International Publishing AG 2016.

Wang, C. (2018). Integrating Data Analytics & Knowledge Management: A Conceptual Model. Issues in Information Systems, 19(2), 208–216.




DOI: http://dx.doi.org/10.21532/apfjournal.v7i2.264

Article Metrics

Abstract view : 114 times
PDF - 104 times

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).